2,270 research outputs found

    Evaluation of Smart Grid projects for inclusion in the third Union-wide list of Projects of Common Interest: Evaluation of candidate projects in the TEN-E priority thematic area of smart grids deployment

    Get PDF
    The document presents the outcome of the evaluation process of candidate Projects of Common Interest in the priority thematic area of ‘smart grids deployment’, as set out in the trans-European energy infrastructure regulation. The evaluation follows the guidelines of the assessment framework for smart grid Projects of Common Interest, 2017 update, developed by the JRC and adopted by the smart grid Regional Group. The report aims to assist the smart grids Regional Group in proposing projects of common interest in the area of smart grids deployment to be included in the 3rd Union list of Projects of Common Interest.JRC.C.3-Energy Security, Distribution and Market

    iWindow - Intelligentes Maschinenfenster

    Get PDF
    Das Verbundforschungsprojekt iWindow: Intelligentes Maschinenfenster beschäftigte sich mit der visuellen Unterstützung von Maschinenbedienern an Werkzeugmaschinen. Diese konnten bisher nur auf wenige bis keine Systeme, die sie bei ihren täglichen Aufgaben direkt an der Werkzeugmaschine unterstützen, zurückgreifen. Das Forschungsprojekt verbindet reale und virtuelle Welt in der Werkzeugmaschine durch Technologien wie Virtual und Augmented Reality, digitaler Zwilling, Simulation und Mehrwertdienste. Durch Nutzung jeweils für die aktuelle Arbeitssituation passender Dienste, werden Mitarbeiter befähigt, sich an die steigende Individualisierung der Produkte und die flexiblere Produktion anzupassen. Kunden und Geschäftspartner werden durch die Möglichkeit eigene mehrwertgenerierende Dienste zu entwickeln und anderen Anwendern zur Verfügung zu stellen in den Wertschöpfungsprozess eingebunden. Diese Publikation beleuchtet die im Rahmen des Forschungsprojekts erarbeiteten Ergebnisse hinsichtlich für ein intelligentes Maschinenfenster benötigter Technologien und Entwicklungen

    Presbiphonia as a cause of glotic insufficiency

    Get PDF
    Introduction and objective: The aging of the voice has become a frequent cause of consultation in the otolaryngologist's daily practice, due to the progressive aging of the population and societies of industrialized countries. With this review, we intend to update the clinical and pathological changes of the larynx that lead to presbyphonia, addressing the most relevant aspects about its causes, clinical manifestations and therapeutic measures. Materials and methods: descriptive and narrative literature review, result of the bibliographic search in the database PubMed with the descriptors strategies [(presbyphonia OR aging voice disorders) AND vocal atrophy]. Revisions, clinical trials and general articles in both english and spanish were selected for the past 10 years. Clinical cases, articles of glottic insufficiency or dysphonia due to other causes were excluded. Results: The systematic review offered 34 articles, of which, 17 met the inclusion criteria. The results should be interpreted with optimism, despite its variability; the presbyphonia is a growing diagnosis, with a greater rise among otorhinolaryngologists dedicated to laryngology. Conclusions: We perform a review on the most relevant aspects regarding the clinical, endoscopic and anatomical findings that occur in presbyphonia. We present the different forms of treatment proposed so far to minimize glottic insufficiency and improve vocal competence in aged people.Introducción y objetivo: El envejecimiento de la voz se ha convertido en una causa frecuente de consulta en la práctica diaria del otorrinolaringólogo, debido entre otras causas al envejecimiento progresivo de la población y sociedades de los países industrializados. Con este trabajo de revisión pretendemos una puesta al día en relación a los cambios clínicos y patológicos de la laringe que conllevan a la presbifonía, abordando los aspectos más relevantes sobre sus causas, manifestaciones clínicas y medidas terapéuticas. Materiales y métodos: trabajo descriptivo, resultado de la búsqueda bibliográfica en la base de datos PubMed con las estrategias de búsqueda [(presbyphonia OR aging voice disorders) AND vocal atrophy]. Se seleccionaron revisiones, ensayos clínicos y artículos en inglés y español de los últimos 10 años. Se excluyeron casos clínicos, artículos de insuficiencia glótica o disfonía por otras causas. Resultados: La revisión sistemática ofreció 34 artículos, de los cuales, 17 cumplieron los criterios de inclusión. Los resultados deben interpretarse con optimismo, a pesar de su variabilidad la presbifonía es un diagnóstico en crecimiento, con mayor auge entre otorrinolaringólogos dedicados a laringología. Conclusiones: Realizamos una revisión sobre los aspectos más relevantes en relación a los hallazgos clínicos, endoscópicos y anatómicos que ocurren en la presbifonía. Presentamos las diferentes formas de tratamiento propuestas hasta ahora para minimizar la insuficiencia glótica y mejorar la competencia vocal en personas envejecidas

    Management for sustainable cephalopod fisheries in Europe: review and recommendations

    Get PDF
    Although cephalopod fisheries are of world-wide importance, in Europe catching cephalopods is managed only in small-scale fisheries, at national level, and few stocks are formally assessed. Because cephalopods are not quota species under the EU’s Common Fisheries Policy, there is currently no requirement for assessment or management at European level. Given increasing interest in targeting cephalopods in Europe, there is a risk that they will be fished unsustainably. Although there have been recent review papers on progress in stock assessment and fishery forecasting for commercially fished cephalopods there has been no recent review of cephalopod fishery management. We aim to fill this gap, with a particular focus on European cephalopod fisheries.We review potential barriers to sustainable fishing and reasons why management of cephalopod fisheries differs from that for finfish fisheries, e.g. due to the high inherent volatility and the possibly cyclic nature of year-to-year variation in cephalopod abundance, reflecting their short lifespan, rapid growth and high sensitivity to environmental conditions. We review fishery management approaches in important cephalopod fisheries worldwide (e.g. in the USA, Japan, Falklands, South Africa, Australia and Russia) and current management of small-scale cephalopod fisheries in Europe. We identify knowledge gaps and limitations to current monitoring programmes and stock assessments and discuss the options available for cephalopod fishery management in Europe, considering the suitability or otherwise of catch and effort limits, use of closed areas and seasons, restrictions on sizes caught and types of fishing gear, and the ole of market-based sustainability pathways.info:eu-repo/semantics/publishedVersio

    Optimization of Lead Placement in the Right Ventricle During Cardiac Resynchronization Therapy. A Simulation Study

    Get PDF
    [EN] Patients suffering from heart failure and left bundle branch block show electrical ventricular dyssynchrony causing an abnormal blood pumping. Cardiac resynchronization therapy (CRT) is recommended for these patients. Patients with positive therapy response normally present QRS shortening and an increased left ventricle (LV) ejection fraction. However, around one third do not respond favorably. Therefore, optimal location of pacing leads, timing delays between leads and/or choosing related biomarkers is crucial to achieve the best possible degree of ventricular synchrony during CRT application. In this study, computational modeling is used to predict the optimal location and delay of pacing leads to improve CRT response. We use a 3D electrophysiological computational model of the heart and torso to get insight into the changes in the activation patterns obtained when the heart is paced from different regions and for different atrioventricular and interventricular delays. The model represents a heart with left bundle branch block and heart failure, and allows a detailed and accurate analysis of the electrical changes observed simultaneously in the myocardium and in the QRS complex computed in the precordial leads. Computational simulations were performed using a modified version of the O'Hara et al. action potential model, the most recent mathematical model developed for human ventricular electrophysiology. The optimal location for the pacing leads was determined by QRS maximal reduction. Additionally, the influence of Purkinje system on CRT response was assessed and correlation analysis between several parameters of the QRS was made. Simulation results showed that the right ventricle (RV) upper septum near the outflow tract is an alternative location to the RV apical lead. Furthermore, LV endocardial pacing provided better results as compared to epicardial stimulation. Finally, the time to reach the 90% of the QRS area was a good predictor of the instant at which 90% of the ventricular tissue was activated. Thus, the time to reach the 90% of the QRS area is suggested as an additional index to assess CRT effectiveness to improve biventricular synchrony.This work was supported by the Secretaría de Educación Superior, Ciencia, Tecnología e Innovación (SENESCYT) of Ecuador CIBAE-023-2014, the Plan Estatal de Investigación Científica y Técnica y de Innovación 2013 2016 from the Ministerio de Economía, Industria y Competitividad of Spain and Fondo Europeo de Desarrollo Regional (FEDER) DPI2016-75799-R (AEI/FEDER, UE), and by Dirección General de Política Científica de la Generalitat Valenciana (PROMETEU 2016/088).Carpio-Garay, EF.; Gómez García, JF.; Sebastian, R.; López-Pérez, AD.; Castellanos, E.; Almendral, J.; Ferrero De Loma-Osorio, JM.... (2019). Optimization of Lead Placement in the Right Ventricle During Cardiac Resynchronization Therapy. A Simulation Study. Frontiers in Physiology. 10:1-17. https://doi.org/10.3389/fphys.2019.00074S11710Abraham, W. T., Fisher, W. G., Smith, A. L., Delurgio, D. B., Leon, A. R., Loh, E., … Messenger, J. (2002). Cardiac Resynchronization in Chronic Heart Failure. New England Journal of Medicine, 346(24), 1845-1853. doi:10.1056/nejmoa013168Abraham, W. T., Gras, D., Yu, C. M., Guzzo, L., & Gupta, M. S. (2010). Rationale and design of a randomized clinical trial to assess the safety and efficacy of frequent optimization of cardiac resynchronization therapy: The Frequent Optimization Study Using the QuickOpt Method (FREEDOM) trial. American Heart Journal, 159(6), 944-948.e1. doi:10.1016/j.ahj.2010.02.034Ai, X., & Pogwizd, S. M. (2005). Connexin 43 Downregulation and Dephosphorylation in Nonischemic Heart Failure Is Associated With Enhanced Colocalized Protein Phosphatase Type 2A. Circulation Research, 96(1), 54-63. doi:10.1161/01.res.0000152325.07495.5aAkar, F. G., Nass, R. D., Hahn, S., Cingolani, E., Shah, M., Hesketh, G. G., … Tomaselli, G. F. (2007). Dynamic changes in conduction velocity and gap junction properties during development of pacing-induced heart failure. American Journal of Physiology-Heart and Circulatory Physiology, 293(2), H1223-H1230. doi:10.1152/ajpheart.00079.2007ARBELO, E., TOLOSANA, J. M., TRUCCO, E., PENELA, D., BORRÀS, R., DOLTRA, A., … MONT, L. (2013). Fusion-Optimized Intervals (FOI): A New Method to Achieve the Narrowest QRS for Optimization of the AV and VV Intervals in Patients Undergoing Cardiac Resynchronization Therapy. Journal of Cardiovascular Electrophysiology, 25(3), 283-292. doi:10.1111/jce.12322Auricchio, A., Fantoni, C., Regoli, F., Carbucicchio, C., Goette, A., Geller, C., … Klein, H. (2004). Characterization of Left Ventricular Activation in Patients With Heart Failure and Left Bundle-Branch Block. Circulation, 109(9), 1133-1139. doi:10.1161/01.cir.0000118502.91105.f6Auricchio, A., Klein, H., Tockman, B., Sack, S., Stellbrink, C., Neuzner, J., … Spinelli, J. (1999). Transvenous biventricular pacing for heart failure: can the obstacles be overcome? The American Journal of Cardiology, 83(5), 136-142. doi:10.1016/s0002-9149(98)01015-7Barber, F., García-Fernández, I., Lozano, M., & Sebastian, R. (2018). Automatic estimation of Purkinje-Myocardial junction hot-spots from noisy endocardial samples: A simulation study. International Journal for Numerical Methods in Biomedical Engineering, 34(7), e2988. doi:10.1002/cnm.2988Barold, S. S., Ilercil, A., & Herweg, B. (2008). Echocardiographic optimization of the atrioventricular and interventricular intervals during cardiac resynchronization. Europace, 10(Supplement 3), iii88-iii95. doi:10.1093/europace/eun220Bertaglia, E., Migliore, F., Baritussio, A., De Simone, A., Reggiani, A., Pecora, D., … Stabile, G. (2017). Stricter criteria for left bundle branch block diagnosis do not improve response to CRT. Pacing and Clinical Electrophysiology, 40(7), 850-856. doi:10.1111/pace.13104Bertini, M., Ziacchi, M., Biffi, M., Martignani, C., Saporito, D., Valzania, C., … Boriani, G. (2008). Interventricular Delay Interval Optimization in Cardiac Resynchronization Therapy Guided by Echocardiography Versus Guided by Electrocardiographic QRS Interval Width. The American Journal of Cardiology, 102(10), 1373-1377. doi:10.1016/j.amjcard.2008.07.015BLEEKER, G. B., SCHALIJ, M. J., MOLHOEK, S. G., VERWEY, H. F., HOLMAN, E. R., BOERSMA, E., … BAX, J. J. (2004). Relationship Between QRS Duration and Left Ventricular Dyssynchrony in Patients with End-Stage Heart Failure. Journal of Cardiovascular Electrophysiology, 15(5), 544-549. doi:10.1046/j.1540-8167.2004.03604.xBonakdar, H. R., Jorat, M. V., Fazelifar, A. F., Alizadeh, A., Givtaj, N., Sameie, N., … Haghjoo, M. (2009). Prediction of response to cardiac resynchronization therapy using simple electrocardiographic and echocardiographic tools. Europace, 11(10), 1330-1337. doi:10.1093/europace/eup258Bordachar, P., Derval, N., Ploux, S., Garrigue, S., Ritter, P., Haissaguerre, M., & Jaïs, P. (2010). Left Ventricular Endocardial Stimulation for Severe Heart Failure. Journal of the American College of Cardiology, 56(10), 747-753. doi:10.1016/j.jacc.2010.04.038Boukens, B. J., Rivaud, M. R., Rentschler, S., & Coronel, R. (2014). Misinterpretation of the mouse ECG: ‘musing the waves ofMus musculus’. The Journal of Physiology, 592(21), 4613-4626. doi:10.1113/jphysiol.2014.279380Bradley, C. P., Pullan, A. J., & Hunter, P. J. (1997). Geometric modeling of the human torso using cubic hermite elements. Annals of Biomedical Engineering, 25(1), 96-111. doi:10.1007/bf027385422013 ESC Guidelines on cardiac pacing and cardiac resynchronization therapy. (2013). European Heart Journal, 34(29), 2281-2329. doi:10.1093/eurheartj/eht150Brugada, J., Brachmann, J., Delnoy, P. P., Padeletti, L., Reynolds, D., Ritter, P., … Singh, J. P. (2014). Automatic Optimization of Cardiac Resynchronization Therapy Using SonR—Rationale and Design of the Clinical Trial of the SonRtip Lead and Automatic AV-VV Optimization Algorithm in the Paradym RF SonR CRT-D (RESPOND CRT) Trial. American Heart Journal, 167(4), 429-436. doi:10.1016/j.ahj.2013.12.007Cano, O., Osca, J., Sancho-Tello, M.-J., Sánchez, J. M., Ortiz, V., Castro, J. E., … Olagüe, J. (2010). Comparison of Effectiveness of Right Ventricular Septal Pacing Versus Right Ventricular Apical Pacing. The American Journal of Cardiology, 105(10), 1426-1432. doi:10.1016/j.amjcard.2010.01.004Cazeau, S., Leclercq, C., Lavergne, T., Walker, S., Varma, C., Linde, C., … Daubert, J.-C. (2001). Effects of Multisite Biventricular Pacing in Patients with Heart Failure and Intraventricular Conduction Delay. New England Journal of Medicine, 344(12), 873-880. doi:10.1056/nejm200103223441202Chung, E. S., Leon, A. R., Tavazzi, L., Sun, J.-P., Nihoyannopoulos, P., Merlino, J., … Murillo, J. (2008). Results of the Predictors of Response to CRT (PROSPECT) Trial. Circulation, 117(20), 2608-2616. doi:10.1161/circulationaha.107.743120ClelandJ. G. F. DaubertJ.-C. ErdmannE. FreemantleN. GrasD. KappenbergerL. The Effect of Cardiac Resynchronization on Morbidity and Mortality in Heart Failure.2005Coppola, G., Ciaramitaro, G., Stabile, G., DOnofrio, A., Palmisano, P., Carità, P., … Corrado, E. (2016). Magnitude of QRS duration reduction after biventricular pacing identifies responders to cardiac resynchronization therapy. International Journal of Cardiology, 221, 450-455. doi:10.1016/j.ijcard.2016.06.203Coronel, R., Wilders, R., Verkerk, A. O., Wiegerinck, R. F., Benoist, D., & Bernus, O. (2013). Electrophysiological changes in heart failure and their implications for arrhythmogenesis. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease, 1832(12), 2432-2441. doi:10.1016/j.bbadis.2013.04.002Crozier, A., Blazevic, B., Lamata, P., Plank, G., Ginks, M., Duckett, S., … Niederer, S. A. (2016). The relative role of patient physiology and device optimisation in cardiac resynchronisation therapy: A computational modelling study. Journal of Molecular and Cellular Cardiology, 96, 93-100. doi:10.1016/j.yjmcc.2015.10.026Da Costa, A., Gabriel, L., Romeyer-Bouchard, C., Géraldine, B., Gate-Martinet, A., Laurence, B., … Isaaz, K. (2013). Focus on right ventricular outflow tract septal pacing. Archives of Cardiovascular Diseases, 106(6-7), 394-403. doi:10.1016/j.acvd.2012.08.005De Pooter, J., El Haddad, M., Timmers, L., Van Heuverswyn, F., Jordaens, L., Duytschaever, M., & Stroobandt, R. (2015). Different Methods to Measure QRS Duration in CRT Patients: Impact on the Predictive Value of QRS Duration Parameters. Annals of Noninvasive Electrocardiology, 21(3), 305-315. doi:10.1111/anec.12313Derval, N., Steendijk, P., Gula, L. J., Deplagne, A., Laborderie, J., Sacher, F., … Jaïs, P. (2010). Optimizing Hemodynamics in Heart Failure Patients by Systematic Screening of Left Ventricular Pacing Sites. Journal of the American College of Cardiology, 55(6), 566-575. doi:10.1016/j.jacc.2009.08.045DeskR. WilliamsL. HealthK. Characteristics and Distribution of M Cells in Arterially.1998Dou, J., Xia, L., Deng, D., Zang, Y., Shou, G., Bustos, C., … Crozier, S. (2012). A Study of Mechanical Optimization Strategy for Cardiac Resynchronization Therapy Based on an Electromechanical Model. Computational and Mathematical Methods in Medicine, 2012, 1-13. doi:10.1155/2012/948781DURRER, D., VAN DAM, R. T., FREUD, G. E., JANSE, M. J., MEIJLER, F. L., & ARZBAECHER, R. C. (1970). Total Excitation of the Isolated Human Heart. Circulation, 41(6), 899-912. doi:10.1161/01.cir.41.6.899Dutta, S., Mincholé, A., Quinn, T. A., & Rodriguez, B. (2017). Electrophysiological properties of computational human ventricular cell action potential models under acute ischemic conditions. Progress in Biophysics and Molecular Biology, 129, 40-52. doi:10.1016/j.pbiomolbio.2017.02.007Elhakam Elzoghby, I. A., Attia, I., Azab, A. E., & Hammouda, M. (2017). Impact of Cardiac Resynchronization Therapy on Heart Failure Patients: Experience from One Center. Archives of Medicine, 09(04). doi:10.21767/1989-5216.1000232Ferrer, A., Sebastián, R., Sánchez-Quintana, D., Rodríguez, J. F., Godoy, E. J., Martínez, L., & Saiz, J. (2015). Detailed Anatomical and Electrophysiological Models of Human Atria and Torso for the Simulation of Atrial Activation. PLOS ONE, 10(11), e0141573. doi:10.1371/journal.pone.0141573FLEVARI, P., LEFTHERIOTIS, D., FOUNTOULAKI, K., PANOU, F., RIGOPOULOS, A. G., PARASKEVAIDIS, I., & KREMASTINOS, D. T. (2009). Long-Term Nonoutflow Septal Versus Apical Right Ventricular Pacing: Relation to Left Ventricular Dyssynchrony. Pacing and Clinical Electrophysiology, 32(3), 354-362. doi:10.1111/j.1540-8159.2008.02244.xGRAS, D., GUPTA, M. S., BOULOGNE, E., GUZZO, L., & ABRAHAM, W. T. (2009). Optimization of AV and VV Delays in the Real-World CRT Patient Population: An International Survey on Current Clinical Practice. Pacing and Clinical Electrophysiology, 32, S236-S239. doi:10.1111/j.1540-8159.2008.02294.xGreenbaum, R. A., Ho, S. Y., Gibson, D. G., Becker, A. E., & Anderson, R. H. (1981). Left ventricular fibre architecture in man. Heart, 45(3), 248-263. doi:10.1136/hrt.45.3.248Guo, T., Li, R., Zhang, L., Luo, Z., Zhao, L., Yang, J., … Hua, B. (2015). Biventricular Pacing With Ventricular Fusion by Intrinsic Activation in Cardiac Resynchronization Therapy. International Heart Journal, 56(3), 293-297. doi:10.1536/ihj.14-260Gurev, V., Constantino, J., Rice, J. J., & Trayanova, N. A. (2010). Distribution of Electromechanical Delay in the Heart: Insights from a Three-Dimensional Electromechanical Model. Biophysical Journal, 99(3), 745-754. doi:10.1016/j.bpj.2010.05.028Heidenreich, E. A., Ferrero, J. M., Doblaré, M., & Rodríguez, J. F. (2010). Adaptive Macro Finite Elements for the Numerical Solution of Monodomain Equations in Cardiac Electrophysiology. Annals of Biomedical Engineering, 38(7), 2331-2345. doi:10.1007/s10439-010-9997-2Huang, W., Su, L., Wu, S., Xu, L., Xiao, F., Zhou, X., & Ellenbogen, K. A. (2017). A Novel Pacing Strategy With Low and Stable Output: Pacing the Left Bundle Branch Immediately Beyond the Conduction Block. Canadian Journal of Cardiology, 33(12), 1736.e1-1736.e3. doi:10.1016/j.cjca.2017.09.013Keller, D. U. J., Weber, F. M., Seemann, G., & Dössel, O. (2010). Ranking the Influence of Tissue Conductivities on Forward-Calculated ECGs. IEEE Transactions on Biomedical Engineering, 57(7), 1568-1576. doi:10.1109/tbme.2010.2046485Krum, H., Lemke, B., Birnie, D., Lee, K. L.-F., Aonuma, K., Starling, R. C., … Martin, D. (2012). A novel algorithm for individualized cardiac resynchronization therapy: Rationale and design of the adaptive cardiac resynchronization therapy trial. American Heart Journal, 163(5), 747-752.e1. doi:10.1016/j.ahj.2012.02.007Leclercq, C., Sadoul, N., Mont, L., Defaye, P., Osca, J., Mouton, E., … Fernandez-Lozano, I. (2015). Comparison of right ventricular septal pacing and right ventricular apical pacing in patients receiving cardiac resynchronization therapy defibrillators: the SEPTAL CRT Study. European Heart Journal, 37(5), 473-483. doi:10.1093/eurheartj/ehv422LEE, A. W. C., CROZIER, A., HYDE, E. R., LAMATA, P., TRUONG, M., SOHAL, M., … NIEDERER, S. (2017). Biophysical Modeling to Determine the Optimization of Left Ventricular Pacing Site and AV/VV Delays in the Acute and Chronic Phase of Cardiac Resynchronization Therapy. Journal of Cardiovascular Electrophysiology, 28(2), 208-215. doi:10.1111/jce.13134Lee, A. W. C., Costa, C. M., Strocchi, M., Rinaldi, C. A., & Niederer, S. A. (2018). Computational Modeling for Cardiac Resynchronization Therapy. Journal of Cardiovascular Translational Research, 11(2), 92-108. doi:10.1007/s12265-017-9779-4Lee, H., Park, J.-H., Seo, I., Park, S.-H., & Kim, S. (2014). Improved application of the electrophoretic tissue clearing technology, CLARITY, to intact solid organs including brain, pancreas, liver, kidney, lung, and intestine. BMC Developmental Biology, 14(1). doi:10.1186/s12861-014-0048-3Linde, C., Ellenbogen, K., & McAlister, F. A. (2012). Cardiac resynchronization therapy (CRT): Clinical trials, guidelines, and target populations. Heart Rhythm, 9(8), S3-S13. doi:10.1016/j.hrthm.2012.04.026Lopez-Perez, A., Sebastian, R., & Ferrero, J. M. (2015). Three-dimensional cardiac computational modelling: methods, features and applications. BioMedical Engineering OnLine, 14(1). doi:10.1186/s12938-015-0033-5Mafi Rad, M., Blaauw, Y., Dinh, T., Pison, L., Crijns, H. J., Prinzen, F. W., & Vernooy, K. (2014). Different regions of latest electrical activation during left bundle-branch block and right ventricular pacing in cardiac resynchronization therapy patients determined by coronary venous electro-anatomic mapping. European Journal of Heart Failure, 16(11), 1214-1222. doi:10.1002/ejhf.178Miri, R., Graf, I. M., & Dossel, O. (2009). Efficiency of Timing Delays and Electrode Positions in Optimization of Biventricular Pacing: A Simulation Study. IEEE Transactions on Biomedical Engineering, 56(11), 2573-2582. doi:10.1109/tbme.2009.2027692Miri, R., Reumann, M., Farina, D., & Dössel, O. (2009). Concurrent optimization of timing delays and electrode positioning in biventricular pacing based on a computer heart model assuming 17 left ventricular segments. Biomedizinische Technik/Biomedical Engineering, 54(2), 55-65. doi:10.1515/bmt.2009.013Miri, R., Reumann, M., Keller, D. U. J., Farina, D., & Dossel, O. (2008). Comparison of the electrophysiologically based optimization methods with different pacing parameters in patient undergoing resynchronization treatment. 2008 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. doi:10.1109/iembs.2008.4649513MOLHOEK, S. G., BAX, J. J., BOERSMA, E., ERVEN, L. V., BOOTSMA, M., STEENDIJK, P., … SCHALIJ, M. J. (2004). QRS Duration and Shortening to Predict Clinical Response to Cardiac Resynchronization Therapy in Patients with End‐Stage Heart Failure. Pacing and Clinical Electrophysiology, 27(3), 308-313. doi:10.1111/j.1540-8159.2004.00433.xMora, M. T., Ferrero, J. M., Romero, L., & Trenor, B. (2017). Sensitivity analysis revealing the effect of modulating ionic mechanisms on calcium dynamics in simulated human heart failure. PLOS ONE, 12(11), e0187739. doi:10.1371/journal.pone.0187739MUTO, C., OTTAVIANO, L., CANCIELLO, M., CARRERAS, G., CALVANESE, R., ASCIONE, L., … TUCCILLO, B. (2007). Effect of Pacing the Right Ventricular Mid-Septum Tract in Patients with Permanent Atrial Fibrillation and Low Ejection Fraction. Journal of Cardiovascular Electrophysiology, 18(10), 1032-1036. doi:10.1111/j.1540-8167.2007.00914.xO’Hara, T., Virág, L., Varró, A., & Rudy, Y. (2011). Simulation of the Undiseased Human Cardiac Ventricular Action Potential: Model Formulation and Experimental Validation. PLoS Computational Biology, 7(5), e1002061. doi:10.1371/journal.pcbi.1002061Passini, E., Mincholé, A., Coppini, R., Cerbai, E., Rodriguez, B., Severi, S., & Bueno-Orovio, A. (2016). Mechanisms of pro-arrhythmic abnormalities in ventricular repolarisation and anti-arrhythmic therapies in human hypertrophic cardiomyopathy. Journal of Molecular and Cellular Cardiology, 96, 72-81. doi:10.1016/j.yjmcc.2015.09.003Pitzalis, M. V., Iacoviello, M., Romito, R., Massari, F., Rizzon, B., Luzzi, G., … Rizzon, P. (2002). Cardiac resynchronization therapy tailored by echocardiographic evaluation of ventricular asynchrony. Journal of the American College of Cardiology, 40(9), 1615-1622. doi:10.1016/s0735-1097(02)02337-9Pluijmert, M., Bovendeerd, P. H. M., Lumens, J., Vernooy, K., Prinzen, F. W., & Delhaas, T. (2016). New insights from a computational model on the relation between pacing site and CRT response. EP Europace, 18(suppl_4), iv94-iv103. doi:10.1093/europace/euw355Potse, M., Dube, B., Richer, J., Vinet, A., & Gulrajani, R. M. (2006). A Comparison of Monodomain and Bidomain Reaction-Diffusion Models for Action Potential Propagation in the Human Heart. IEEE Transactions on Biomedical Engineering, 53(12), 2425-2435. doi:10.1109/tbme.2006.880875Potse, M., Krause, D., Bacharova, L., Krause, R., Prinzen, F. W., & Auricchio, A. (2012). Similarities and differences between electrocardiogram signs of left bundle-branch block and left-ventricular uncoupling. Europace, 14(suppl 5), v33-v39. doi:10.1093/europace/eus272Prassl, A. J., Kickinger, F., Ahammer, H., Grau, V., Schneider, J. E., Hofer, E., … Plank, G. (2009). Automatically Generated, Anatomically Accurate Meshes for Cardiac Electrophysiology Problems. IEEE Transactions on Biomedical Engineering, 56(5), 1318-1330. doi:10.1109/tbme.2009.2014243PRINZEN, F. W., & PESCHAR, M. (2002). Relation Between the Pacing Induced Sequence of Activation and Left Ventricular Pump Function in Animals. Pacing and Clinical Electrophysiology, 25(4), 484-498. doi:10.1046/j.1460-9592.2002.00484.xVan Deursen, C., van Geldorp, I. E., Rademakers, L. M., van Hunnik, A., Kuiper, M., Klersy, C., … Prinzen, F. W. (2009). Left Ventricular Endocardial Pacing Improves Resynchronization Therapy in Canine Left Bundle-Branch Hearts. Circulation: Arrhythmia and Electrophysiology, 2(5), 580-587. doi:10.1161/circep.108.846022Prinzen, F. W., Vernooy, K., Lumens, J., & Auricchio, A. (2017). Physiology of Cardiac Pacing and Resynchronization. Clinical Cardiac Pacing, Defibrillation and Resynchronization Therapy, 213-248. doi:10.1016/b978-0-323-37804-8.00007-9Rickard, J., Karim, M., Baranowski, B., Cantillon, D., Spragg, D., Tang, W. H. W., … Varma, N. (2017). Effect of PR interval prolongation on long-term outcomes in patients with left bundle branch block vs non–left bundle branch block morphologies undergoing cardiac resynchronization therapy. Heart Rhythm, 14(10), 1523-1528. doi:10.1016/j.hrthm.2017.05.028Romero, D., Sebastian, R., Bijnens, B. H., Zimmerman, V., Boyle, P. M., Vigmond, E. J., & Frangi, A. F. (2010). Effects of the Purkinje

    Desmoglein 2 mutant mice develop cardiac fibrosis and dilation

    Get PDF
    Desmosomes are cell–cell adhesion sites and part of the intercalated discs, which couple adjacent cardiomyocytes. The connection is formed by the extracellular domains of desmosomal cadherins that are also linked to the cytoskeleton on the cytoplasmic side. To examine the contribution of the desmosomal cadherin desmoglein 2 to cardiomyocyte adhesion and cardiac function, mutant mice were prepared lacking a part of the extracellular adhesive domain of desmoglein 2. Most live born mutant mice presented normal overall cardiac morphology at 2 weeks. Some animals, however, displayed extensive fibrotic lesions. Later on, mutants developed ventricular dilation leading to cardiac insufficiency and eventually premature death. Upon histological examination, cardiomyocyte death by calcifying necrosis and replacement by fibrous tissue were observed. Fibrotic lesions were highly proliferative in 2-week-old mutants, whereas the fibrotic lesions of older mutants showed little proliferation indicating the completion of local muscle replacement by scar tissue. Disease progression correlated with increased mRNA expression of c-myc, ANF, BNF, CTGF and GDF15, which are markers for cardiac stress, remodeling and heart failure. Taken together, the desmoglein 2-mutant mice display features of dilative cardiomyopathy and arrhythmogenic right ventricular cardiomyopathy, an inherited human heart disease with pronounced fibrosis and ventricular arrhythmias that has been linked to mutations in desmosomal proteins including desmoglein 2

    Phylogenetic Approach Reveals That Virus Genotype Largely Determines HIV Set-Point Viral Load

    Get PDF
    HIV virulence, i.e. the time of progression to AIDS, varies greatly among patients. As for other rapidly evolving pathogens of humans, it is difficult to know if this variance is controlled by the genotype of the host or that of the virus because the transmission chain is usually unknown. We apply the phylogenetic comparative approach (PCA) to estimate the heritability of a trait from one infection to the next, which indicates the control of the virus genotype over this trait. The idea is to use viral RNA sequences obtained from patients infected by HIV-1 subtype B to build a phylogeny, which approximately reflects the transmission chain. Heritability is measured statistically as the propensity for patients close in the phylogeny to exhibit similar infection trait values. The approach reveals that up to half of the variance in set-point viral load, a trait associated with virulence, can be heritable. Our estimate is significant and robust to noise in the phylogeny. We also check for the consistency of our approach by showing that a trait related to drug resistance is almost entirely heritable. Finally, we show the importance of taking into account the transmission chain when estimating correlations between infection traits. The fact that HIV virulence is, at least partially, heritable from one infection to the next has clinical and epidemiological implications. The difference between earlier studies and ours comes from the quality of our dataset and from the power of the PCA, which can be applied to large datasets and accounts for within-host evolution. The PCA opens new perspectives for approaches linking clinical data and evolutionary biology because it can be extended to study other traits or other infectious diseases

    A Cryogenic Silicon Interferometer for Gravitational-wave Detection

    Get PDF
    The detection of gravitational waves from compact binary mergers by LIGO has opened the era of gravitational wave astronomy, revealing a previously hidden side of the cosmos. To maximize the reach of the existing LIGO observatory facilities, we have designed a new instrument able to detect gravitational waves at distances 5 times further away than possible with Advanced LIGO, or at greater than 100 times the event rate. Observations with this new instrument will make possible dramatic steps toward understanding the physics of the nearby Universe, as well as observing the Universe out to cosmological distances by the detection of binary black hole coalescences. This article presents the instrument design and a quantitative analysis of the anticipated noise floor

    A Cryogenic Silicon Interferometer for Gravitational-wave Detection

    Get PDF
    The detection of gravitational waves from compact binary mergers by LIGO has opened the era of gravitational wave astronomy, revealing a previously hidden side of the cosmos. To maximize the reach of the existing LIGO observatory facilities, we have designed a new instrument that will have 5 times the range of Advanced LIGO, or greater than 100 times the event rate. Observations with this new instrument will make possible dramatic steps toward understanding the physics of the nearby universe, as well as observing the universe out to cosmological distances by the detection of binary black hole coalescences. This article presents the instrument design and a quantitative analysis of the anticipated noise floor
    corecore